Ageing Infrastructure

What do you think is the most likely reason for a water grid shutdown?  It isn’t terrorism and it isn’t pollution. The answer is, the age of the infrastructure used to deliver the water or collect the sewage. Think about the city you live in. Chances are it has existed for hundreds of years, if not longer. Most cities water systems grow in phases. They keep adding to the network every year as the population grows. The end result is most cities have infrastructure that range from less than a year to hundreds of years and with many different materials. I have seen water mains made of wood in service as late as 2011. Like any piece of equipment it all has a useful lifespan, beyond that lifespan failures become increasingly more likely to be catastrophic. The result is a large volume and dollar amount of material and equipment that needs repairs or to be replaced.

Wooden Water Main circa 1909 source

Wooden Water Main circa 1909 source

Normally the stress on water systems comes from population growth.  A water main that was ok in the 1980’s may not be large enough for today’s population.  As cities infill and build higher density buildings they frequently overburden the water systems.  Either causing contamination or total failure of the system.

Older equipment is also more susceptible to natural disasters, terrorism and human accidents. These three things can break a new system too, however they don`t have to try as hard with the older systems.

Climate change is having an affect too.  As severe weather events are on the rise, storm sewers might be found lacking, as was the case in Calgary, Alberta and Toronto, Ontario recently.  The system was grossly undersized for the amount of rain that fell.  They said things like “it was a month’s worth of rain in one day” on the news.  When the fact is, it once was a months worth of rain, and is now something more frequent, lets say a weeks worth of rain.    I’m not suggesting we build our systems to meet a 1000 year storm, but I am suggesting that our current idea of a 100 year storm may be an underestimation and that the error is getting worse.  To bring it back to infrastructure, if we are built to the current 100 year storm levels, what happens if the 100 year storms are getting worse?  We will find out in the not too distant future.

Calgary, Flood, Floods, Water

Flooding In Calgary AB 2013 source:

What are the options for people to take? The first and most important thing to do is to plan ahead and replace older parts of the system before they fail.  A $50,000 job to replace an old section of pipe at a time you choose is a lot cheaper than waiting for it to fail at the time you are least prepared.  If you are connected to a public utility, ask them about their equipment replacement plan.  If they are not looking 25 years into the future or longer then ask them why not? If you have private systems, you need to ask the same questions.  Can you afford to replace the septic system when it fails? Or can you afford to dig/drill a new well when the casing cracks?

As you can probably surmise the addition of more people + more rain + more water and more sewage means system failures will become more frequent and probably for longer periods of time.  What does this mean to the average person?  Plan for system failure.  Have a backup system ready to go when it does.  Know the age of your equipment and it`s expected lifetime. That way you wont be caught off guard.

Septic Tank Problems

Septic systems range from the very simple to the extremely complex. Even on the simplest septic systems there are still many things that can go wrong. If you believe that septic systems are something you bury and forget about, then I guarantee that you will come across many of these problems. There are simple things anyone can do to keep their septic system running properly for decades.

First a general description of a septic system. The system starts where the common drain leaves the house. This drain can go to a municipal sewer or to an individual septic system. The water flows by gravity into the septic system. The inlet to the septic tank is protected by a T shaped baffle. It is open on the top and bottom. It is designed to contain floating debris in a small area and to direct solids to settle down towards the bottom. The water is contained here where solids settle out to form a sludge layer and floating objects form a scum layer. In between there is a clear zone where the water has very few solids. The water in the tank is treated by anaerobic bacteria. The bacteria break down organic compounds in the water until there is almost nothing left.
The water leaves the tank through another T shaped baffle on the other side of the tank. This one goes down to the clear zone and allows clear zone water to exit the tank without coming into contact with the scum layer. Some tanks have a septic pump, the pump is installed on the opposite side of the inlet and at the expected height of the clear zone. Larger tanks might have a dividing wall to keep sludge and scum on one side and clear water on the other side.

Septic Tank, Septage, scum, sludge, clear, zone

Basic Septic Tank Design (source:

The sludge layer if not removed every three to five years can cause a major failure of the entire system. Not everything can be broken down completely.  There are always things that either never breakdown or breakdown too slowly and they accumulate.  The sludge layer will eventually reduce the capacity of the tank and the solids will block the inlet or the outlet of the tank.  The sludge layer will be a rapid problem if the people using the system treat the toilet as a garbage can.

The scum layer is all the floating solids the get flushed into the system. Grease and oils cause a large part of the scum problem. But they are far from the only culprits. Cooking oils and grease coat the walls of the pipes and tanks and slowly reduce the size of the of the inlet and outlet eventually blocking them, and you can see how that is a problem.

The drain field is where the treated effluent gets released back to the environment. It may be called something else like a tile bed or weeping tile. They are usually subterranean but can sometimes be on the surface. Regardless there are still buried pipes and they are easy to collapse if you drive a vehicle over them. Lawn tractors are OK but even compact cars are too heavy for the shallow plastic piping. If the piping becomes cracked or even a section collapses then pipe will become blocked with dirt and your waste water will have nowhere to go except back into the house.

Hydraulic overloading is the technical name for putting too much sewage into your septic tank.  This can happen if you have a party and there are more people using the system or if the sludge layer reduces the capacity of the tank.  The end result of overloading is that poorly or untreated sewage leaves the system negatively impacting the surrounding area.

Leaks are bound to occur with age.  You can also create leaks by driving over the tank and excavating too close to the tank.  Leaks are a huge problem once they occur.  The groundwater and soil contamination is extremely expensive to clean up.  You may also be liable for damage to the neighbor’s water supply depending on the riparian laws where you live.  A leaking tank needs to be replaced immediately.

Proper maintenance will prevent most problems.  The worst thing anyone can do is to bury the septic system and forget about it.

Using a Straight Razor

One of the areas of self-reliance I have been exploring is spending less money on disposable goods. My latest foray into a more self-reliant life is in the bathroom. Specifically,shaving. I was spending a lot of money on disposable razors. As I was growing up I gradually bought increasingly more expensive razors. I was suckered into the marketing machine around men’s razors. I believed that more blades was better. I also thought those moisture strips actually mattered. Eventually I was paying around $30 for a pack of four razors. At almost $30 for a pack of razors, they were my single largest expense for personal grooming. I lost my ability to pay for the latest and greatest razor when they came out with a razor that vibrated. I could not and still cannot see how a vibrating razor is better.
First I started buying less expensive razors. But the quality of the shave left something to be desired. That and they only last for two or three shaves and it still felt like a waste of money.


Straight Razor In It's Box

I recently purchased a straight razor because they can be sharpened and if they are properly maintained they can last forever.
Using a straight razor is a simple way to save money. There are significant upfront costs. My razor cost $250 in a kit with a strop and shaving cream. By the end of the year it will have paid for itself in savings on disposable razors.


Open Straight Razor

Shaving with a straight razor is a different shaving experience. First it takes some nerves to place a four inch blade against your neck and face. Remember this is the razor they are referring to when they say “razor sharp”. Second you hold it differently from a disposable razor. This takes some getting used to but once mastered the razor can be very finely controlled. The design is one of simplicity and perfection. There is very little need for improvement. The only thing disposable razors do better is elininal eliminate the learning curve.


Holding a Straight Razor

Shaving is simple once you get the knack for it. Holding the blade at 30° to the skin creates the perfect cutting angle. Any lower angle will result in poorer cutting and some pulling of hairs. As the angle gets sharper the risk of cutting the skin increases. If the blade is held correctly charging the blade’s angle is easy and following the contors of the face and neck very simple. Have confidence and go slowly to keep control, but fast enough for decent cutting. Better results can be achieved if the skin is warm and wet before starting. This will make all the hairs stand up. For an even closer shave you can shave against the grain. If the blade is still sharp there will be little chance of ingrown hairs.
When finished, clean and dry the blade. Excess moisture on the blade can cause rusting and bacterial growth. Just becareful not to touch the cutting edge or else you might dull it or cut yourself.

Strop Leather Side

The cutting edge of the razor only lasts two or three shaves, just like disposables. Unlike disposables, this blade can easily be sharpened.


Strop Linnen Side

Sharpening is also very simple. Holding the blade at 30° to the strop, run the blade backwards along the strop. NEVER run the cutting edge forward along the strop. Doing so will permanently damage the blade. Alternate with the leather and linnen sides and the cutting edge will be good as new. Do not sharpen the razor immediately after shaving. The edge will be slightly distorted from the hot water and sharpening will cause damage.

This is enough information to get started. Hopefully you are inspired to get one yourself. Then you too could enjoy significant savings and the feeling of being just a tiny bit more self-reliant.

Why is my water that color?

As someone who works in water treatment I fequently receive questions about red, black, pink or cloudy appearances in drinking water. Contrary to what might be expected none of these colors are inherently dangerous to human health. They do however make the water look unappetizing. They are called asethetic water quality indicators. Well the colors themselves isn’t the indicator, what causes the water is. I will outline the causes below.

Red water is usually caused by the oxydation of iron and iron bacteria. To be a little more accurate the color is a reddish brown, if you see a red that belongs in a paint can then I highly recommend NOT drinking it. Iron oxydation (rust) is not dangerous at all. Many water sources contain iron naturally. Iron is prevalent in groundwater. The red color comes from iron particles rusting when they come into contact with oxygen in the water. The rusting is accelerated when the iron is introduced to chlorine. As you know chlorine is very commonly used as a disinfectant. When there is a lot of iron and a lot of chlorine then there can be a visible particles of rusted iron in the water. This looks really bad when you turn on the faucet but iron is something they add to mineralized bottled water and iron is a necessary element in proper nutrition.
Iron bacteria can enter the water at the source or if the water is stored in a metal container or watermain. Wells can become contaminated with iron bacteria. When they do, read this to know what to do about it.

Black colored water is not to be confused with black water which is a term used for sewage. Sewage is often a yellowish brown, unless it has gone septic and then it is very black and very smelly. An odorless black tint to water is usually due to manganese. Manganese behaves a lot like iron does except it oxidizes a lot slower. Water stored for a couple days or more will turn black if there are high levels of manganese in the water. Manganese is more often found in groundwater than in surface water. Sometimes it wont be noticeable in the water. It will however be noticable as a black stain on appliances and reservoir walls.

Pink water comes from potassium permanganate (KMnO4). Permanganate is a treatment chemical used to help oxidize iron and manganese. When too much is added the water turns pink. When a lot is added then the water turns purple. The pink isn’t dangerous to human health. It is hower alarming to see pink coming out of a faucet. To read how to use potassium permanganate as a disinfectant read this.

To remove iron, manganese and permanganate is accompolished with greensand filtration. Don’t let the name fool you, greensand is black in color. Greensand is chemically activated to remove oxidized minerals from water.

A yellowish tint (sometimes brown) to the water IS potentially dangerous. Yellow tea colored water is indicative of organic material in the water. Organic material is mostly non living particles but it also includes bacteria, viruses, and other pathogens. Sewage is also this color. So beware of yellowish water.

Not many different things can cause a truely cloudy appearance to water. Turbidity is sometime said to be “cloudy” but it is caused by suspended particles blocking light from passing through. Usually turbidity is also colored at the same time. Unless the particles are white in color, then turbidity isn’t cloudy, it is dirty.
Cloudy water is caused from dissolved gasses (usually oxygen) in the water getting released. This happens when the temperature in the water is significantly different than the temperature of surrounding environment. Since large bodies of water are slower to heat up and slower to cool down, this difference happens every spring and fall. It is called reservoir turnover. The way to test if it is just dissolved gasses in the water is to let a glass sit for five minutes. All bubbles of gasses will disappear and the water will look and taste normal. If the water is still cloudy after five minutes, then the problem is caused by turbidity and it must be removed by filtration.

Not everything that can happen to drinking water is dangerous. Reddish tints from iron and blackish tints from manganese are natural and harmless. This article should help you determine when visual changes to the water are cause for alarm and when they can be ignored safely.