Evaluating Risk and Preparing Accordingly

From extreme weather related disasters to economic collapse, danger is a very real part of daily life. Risk is part of every activity humans do everyday. Risk can apply to our safety, economic, political, environmental and social spheres. There is a risk when cooking breakfast, there is a risk when driving a car there are risks when you invest money and there are risks when you tell someone you love them for the first time. Basically, because life is so risky, people feel the need to mitigate risk wherever possible and prepare for when disaster strikes. Some types of risk human beings are very good at evaluating, other types not so much.

Natural Disaster: Tornado  (source: tornado-facts.com)

Natural Disaster: Tornado (source: tornado-facts.com)

Risk is made up of two parts. The severity and the frequency. Both the severity or consequences and the frequency are essential for understanding the risk. Events that have a low severity and a low frequency therefore are low risk and are generally considered to be safe.

Risk Matrix for Classifying Risk Types (source: erris.org)

Risk Matrix for Classifying Risk Types (source: erris.org)

The danger comes from events that have either high severity or high frequency (or both). If an event has high severity and high frequency, it is necessarily very dangerous. A great example of these types of events are hurricanes. They happen every year and cause significant damage every year. Even if you aren’t directly affected by a hurricane, you are reminded of the last time you where hit with every hurricane.
Where humans become confused about risk is when we are afraid at the same time. If we are for example afraid of nuclear meltdown, then we will rank a nuclear meltdown as a more significant risk. This is referred to as the dread factor. The dread factor is a dangerous thing to ignore. With finite resources for disaster preparedness and risk reduction giving into fear will cause a real risk to be ignored. I’m not suggesting that the risks we dread are not dangerous, just that it is easy to over inflate their importance to our time, money and effort.

Humans have a technology bias. We feel that man made disasters are inherently riskier. This is partly due to the dread factor regarding man made disasters but it is also due to a willful down playing the risk from natural disasters. Severe weather can happen anywhere on the planet and happens very frequently.  Man made disasters can also happen anywhere, but they do not happen nearly as frequently.

Man Made Disaster: The Kuait Oil fires (source: disasterium.com)

Man Made Disaster: The Kuait Oil fires (source: disasterium.com)

Statistics are necessary for knowing what the likelihood of any event occurring could be. The good news is you don’t need to be particularly strong in math to do this. What is really important is the ranking and directing more resources to the top ranking items.
Statistics can also be used to highlight risk or hide risk. That is assuming people will read the statistic correctly. The term 100 year storm is often interpreted as a storm that comes every 100 years. It actually refers to a storm that historically only occur once in a 100 year period. The difference is you can have a 100 year storm occur two years in a row or more.

I have found some ways to learn what you are most at risk for/from. The news is a good source, if you read about forest fires nearby, then you are probably at risk from forest fires in general. Try to read the news as factually as possible. Ignore any hype and sensationalism.

Next, ask your family for a list of any health problems and causes of death. Many diseases are genetic and knowing what you may affect you can give you time to delay or stop it all together. If all your grandparents died of heart disease, then action today can prevent that fate for you.

Next, call your insurance company. Insurance companies are in the business of estimating risk. The more expensive the coverage is, the more likely that event is to occur. Another question to ask is if there is anything they won’t cover for where you live. If an insurance company won’t sell you flood insurance, I can almost guarantee that you live on a flood plain and a flood is in your very near future.

Finally, most risk can be averted just by paying attention. When we are alert and attentive we will act sooner and are significantly more likely to be prepared.

Can I use a storm-water pond as a back-up source of water?

Storm-water ponds are the closest alternative source of water for many people living in urban areas. In an emergency this source of water may be all that is available to you.  Eventually any water you have stored will be consumed and the water in a storm-water pond may be the difference between life and death.  With the proper treatment your local storm-water pond can be a great backup source of drinking water.

Industrial storm-water pond (source: info.evergreen.ca)

Storm-water presents a unique set of challenges during treatment. Because storm-water ponds collect surface water, the water is exposed to all the contaminants on the ground in the catchment area. This includes but is not limited to pesticides and fertilizers applied to lawns, motor oil and gasoline leaking from vehicles and litter like cigarette buts. It all ends up is the storm-water pond. Those chemicals are already in storm-water ponds on a normal day. During an emergency there may be additional contamination from sewage runoff from an overloaded or broken sewage system. The water in the pond will also contain all the microorganisms like ecoli, giardia and cryptosporidium normally in surface water. Any one of these will make you very sick if you get infected with them.
Finally, there will be high levels of nitrates in storm-water ponds. Too much nitrates consumed by young children can cause blue baby syndrome.

The first step in treating water from a storm-water pond is straining. Straining the water through a cloth or loose sand filter will remove large particles (ones you could pick up with your fingers). Remove as much of the suspended particles from the water as you can. Straining the water first will extend the life of your proper water filter.

If you have a clarifying agent like aluminum sulfate, this is the best time to add it to the water.  It will make contaminants too small to be filtered become attracted to each other and become significantly larger.  Larger particles are easier to remove from the water. Let the water sit still for at least 30 minutes without disturbing it.  All the newly formed large particles (called floc) will sink to the bottom.  When you take the water from this container, make sure you leave the majority of the settled material at the bottom of the container.

Urban Storm-water pond (source: greenbmp.blogspot.com)

The next step is to filter the water. Filter the water even if it looks clear, the human eye is five times too weak to detect dangerous levels of particles. Filter the water at least once through an activated carbon filter. Activated carbon is known to remove many different chemicals from water including pesticides, chlorine and fluoride. Activated carbon is not the same as charcoal. Charcoal is similar, it can remove toxins from water but it is nowhere near the efficiency of activated carbon.

The third step is oxidation. Oxidation will help with disinfection as most disinfectant chemicals are also oxidizers. Chemicals like sodium hypochlorite and potassium permanganate are both oxidizers and disinfectants. Oxidation will break down many of the remaining contaminants and inactivate many of the remaining bacteria. Keep adding the oxidizer/disinfectant till you can detect a residual after 20 minutes. The 20 minutes is the minimum you should wait for a gallon of water. Wait longer for larger volumes. This is because oxidation is a chemical reaction that isn’t instant. It needs time to complete the reaction.

The fourth step is to filter the water again. Filtering again is necessary because the disinfection/oxidation step will create some potentially carcinogenic byproducts. We filter before oxidation to minimize the amount of chlorine (or other chemical) and to limit the possibility of forming dangerous byproducts. We filter the second time to remove any byproducts that have been formed.

The final step is to boil the water.  This will help with disinfection, but the main goal of boiling at this point is to remove any volatile chemicals.  Any chemical with a boiling point lower than water will be removed after boiling.

A note about disinfection.  If all of these steps are followed there is no need for a step dedicated for disinfection.  Between the oxidation and the boiling of the water any microorganisms will be inactivated.  If you are storing the water for a long time then add some sodium hypochlorite for a residual disinfectant.  The residual disinfectant will prevent the water from becoming recontaminated before you drink it.

One additional possible step is to aerate the water.  Ponds are frequently stagnant.  Stagnant water is green with algae, it smells bad and tastes worse. After the water is made potable, transfer the water back and forth between two glasses. This adds oxygen to the water and will make the water taste better.

This may seem like a lot of work for something as small as a storm-water pond.  What I have described are the basic steps to turn the potentially toxic water in the pond into clean and safe drinking water.

Terrorist Attack and Water Systems

Water systems are distributed networks of pipes, pumps and reservoirs. Like all distributed networks they can be very difficult to protect from vandalism and terrorist attack. There are two broad types of attacks that could hit a water system. The first type is an attack on the quantity of water available (physical supply) and the second is an attack on the quality of water. The end result of both types of attack is a lack of potable water entering your home.

The greatest defense for a water system is that most of it is underground. It is very difficult to access most parts of water distribution systems. Even for the operators of the system it is time consuming and disruptive to the wider community. If anyone unauthorized to dig in a road to access a watermain they will be reported to the authorities in the form of complaints about traffic or noise.
I think it goes without saying that depending on public complaints to defend against terrorism is nowhere near secure.

Water Treatment Plant (source: wikipedia.org)

The exposed parts of water systems are water treatment facilities, reservoirs and fire hydrants. These are the points where the system is at the surface and easily accessible. These different points also offer different security concerns.

Treatment facilities are as secure as any factory or industrial facility will be. The treatment facility I work at is always locked and there are a limited number keys. Then there is an electronic alarm system which brings a human on site if there is an intrusion alarm. There is also a human dispatched if the communication link is broken. A large city water treatment facility will most likely be manned twenty-four hours a day. The biggest weakness here is that properly armed people can force their way in and destroy the building if they so desire. Or they can contaminate the reservoir on site (if they know how).

Reservoirs of treated water are next most likely place for a terrorist attack. The biggest weakness here is that reservoirs are almost never manned during the day. They will be visited most days, but rarely will people be there all day. The good news is that water in reservoirs is monitored constantly(usually) with automatic analyzers. Reservoirs can be destroyed, and the water within wasted. Or the quality of the water can be destroyed this is where chemicals could be added easily.

The remaining pieces of the system are fire hydrants. Fire hydrants pose a unique risk to water security. It is very easy to add chemicals to a fire hydrant. It is however not easy to get that chemical into the water supply. This is because of the construction of the hydrant itself and the pressure in the system. There is a valve at the bottom of the hydrant which isolates the water. In order to add chemicals to a fire hydrant you also have to lower the system pressure which is rarely easy to do undetected. At this point I want you to remember the scene in Batman Begins where Sandman is dumping his psychotropic drug into a cracked watermain. I don’t expect realistic depictions from the movie, I do however want you to know this is nowhere near realistic. Watermains are pressurized, when they crack water shoots out at anywhere from 50 to 100psi. This is enough to erode foundations of buildings and the all soil around the break creating massive sinkholes. It is not something you can pour chemicals into. This is what it looks like when watermains break.

Just adding chemicals to water, is not as effective as it appears on the surface.  Most water supplies contain residual disinfectants, usually chlorine.  Disinfectants are highly reactive chemicals, they aren’t limited to just killing bacteria.  Highly reactive chemicals often react with other chemicals.  I am obviously oversimplifying the chemistry involved, but it is true that a large portion of any chemical added to water will be consumed by the chlorine in the water.

Adding Chemicals to Water (source: http://www.thejakartapost.com)

Cyber attack is another way water systems are vulnerable.  You may wonder why water treatment facilities are connected to the internet and the answer is for remote monitoring and control.  It may seem like an unwarranted risk having these facilities connected to the web.  It is not an unwarranted risk at all.  The likelihood of the automated system needing an intervention that cannot wait for someone to be onsite is greater than a targeted cyber attack. Keep in mind that even normal breakdowns of the watersystem can cause illness and even death.  These need to be responded to and are just as important as preventing cyber attack. I am not a technology expert so I will leave it to other people to suggest the best firewall setup.   Another thing to note about cyber attack on a water treatment facility is that even if the attacker is successful and shuts down the control computer, the facility can still be controlled manually.

Terrorism is something that needs to be addressed when it comes to water systems.  People inside and outside the system need to be aware of the risks and what can be done for protecting the security of out water.

Water Preparedness: Common Beginner Mistakes

Are you thinking about starting to store water? How about emergency water treatment? Getting started can be a very daunting task. Where should efforts be focused? What pitfalls should be avoided?  This article will explore a few of the mistakes I see people make when they start to take their personal water security seriously

Don’t be left without potable water. Avoid beginner mistakes. (source: always foodie.com)

The very first thing to learn is that there is no magic bullet. There is never a single product or technique which will always make water safe to drink. Combining, knowledge, multiple storage/treatment techniques and multiple products for storage/treatment is the best way to guarantee a safe source of drinking water for yourself and your family.  This logic or philosophy of combining as many protections as possible is used by municipal water systems all across North America.  It is referred to as a multi-barrier approach and it boils down to having many different protective measures to prevent contamination, in the event that one barrier fails, there are still many others in place.  To put it in layman’s terms, when it comes to water security, it isn’t a good idea to put all your eggs in one basket.

Marketing campaigns will make all sorts of claims about water products. Some will be irrelevant, like claims of BPA free plastic when the product is made from a type of plastic that never had BPA. Other claims will be over stated. The claim that is most often overstated is the number of times a water treatment product can be used. The quality of the water being treated is too variable for any company to give you an absolute number of times. This might not be done to deceive you. It could just be that the water they tested the product with was easier to treat then your water. Remember that no product will make the water perfect.  They will make the water safer when used correctly, if used incorrectly many water treatment products can make the water significantly more dangerous to drink.

Water needs to be stored in an appropriate container. This container needs to be able to physically hold the weight of the water and not leach any chemicals into the water. Assuming any garbage can sized container is appropriate will at best lead to soggy disappointment and at worst a severe case of gastrointestinal disease. For more information on water storage, read The Why? How? and How Much? of Water Storage?

Once your water is stored it needs to be kept safe. Water can become contaminated at any time. Anytime the container is open there is potential for contamination to occur. Read this article to find out what to do when your backup source of water becomes contaminated. The assumption that water only needs to be treated once is false. What was once safe to drink may be very dangerous when you need it if your aren’t protective of your supply. Water can turn stagnant when stored for long periods of time. Stagnation while not a health hazard is a taste hazard. Stagnant water tastes bad. Adding air to the water is how you relieve stagnation. Adding air is as simple as passing the water from one glass to another repeatedly or stirring the reservoir. The goal is to increase surface contact between the atmosphere and the water. It is important that aeration of the water will also remove the remaining chlorine (if any was present) in the water. If you are aerating the reservoir make sure you add some more disinfectant. Do this so you can keep your disinfectant residual high enough to keep the water contamination free.

Another mistake people make, is they store water but make no changes for reducing the water they use. Forgetting to change behavior during a crisis is probably the biggest mistake beginners make. Different situations require different behavior, this applies to your personal water use. You will be amazed at how much water is used if you aren’t careful. What could last a week might be used in a day and then you will understand the true value of water conservation. This mistake can also happen in more than just your water use.  For more information on water conservation read why water conservation is a prepper’s must do.

The single biggest mistake beginners is they assume that they can learn how to treat water later. Later becomes too late and then it can become fatal. It is very difficult to learn something complicated like water treatment when your life depends on it. Learning as much as you can before an emergency strikes is the single best thing you can do to stay safe.

This article covers just a few of the common mistakes I see people make when they start taking their water security more seriously.  There are many more mistakes that can be made and no one person has the perfect solution to them all. Water security is something that needs to be tailored to each person or family’s needs.  Have you found any common mistakes while preparing for water shortages? If so, leave a comment below, I would love to hear them.