PurifiCup Natural Water Purifier Product Review

When camping or hiking or even during an emergency drinking water becomes very important (water is important everyday really). You can store water easily if you don’t have to travel or evacuate, but carrying enough water if you are on foot is very difficult and very heavy. There is a need for a portable, simple, effective way to make safe drinking water.

PurifiCup is a commercially available portable water solution. I had the opportunity to test one and I put it up against some laboratory tests and my own personal judgments. It is very simple to use and is compact enough to fit into any bag and most cup holders.
This filter fits perfectly over wide mouth Nalgene bottles and screws directly onto standard water bottles. This product is very versatile and that makes it useful in a wide variety of situations.

PurifiCup Natural Water Purifier over a Nalgene Water Bottle

Some useful statistics on the PurifiCup. The cup is 10 fl oz, and it can filter 100 to 150 cups before it needs a new cartridge. It is 7.3 cm in diameter and 16 cm in height. The filter media includes ion exchange resins, activated carbon and nanoscale silver coating membrane.  The PurifiCup retails for $59.99 for the cup and filter, and replacement filters costing $13.99

Normal filters treat water by physically removing suspended materials in the water. A good physical filter removes particles as small as 0.2 microns. This will make the filter capable of removing all sizes of bacteria (but not all viruses).

The PurifiCup however isn’t a normal filter. It for one doesn’t filter below the 1.0 micron level. That is not rearly fine enough to remove all types of bacteria. This may seem like a bad thing, but the Purificup does something that no other portable water filter does (that I am aware of). The PurifiCup disinfects as it filters the water with a nano-silver membrane. Nano-silver has been shown to kill over 600 different types of bacteria.

What I wanted to know was, in a real world setting does it work? Does the product come close to meeting the claims? I tested the PurifiCup’s ability to remove turbidity, chlorine, color and its ability to kill bacteria.

PurifiCup Packed Up For Storage Or Travel

I took a sample of treated water to measure chlorine removal. The water sample I chose here is typical municipal drinking water. I also took a sample from a nearby river. This river represents a typical backup water source that could be used while hiking or in a survival situation.

There was a chlorine residual of 2.03 mg/L to start with. After filtering with the PurifiCup chlorine was reduced to 0.16 mg/L. To put it simpler, there was a 97% reduction of chlorine in the tap water. That level or chlorine reduction is amazing.

In the river sample I tested trubidity and color. Turbidity is the measure of suspended particles in the water, or the measure of the cloudiness of the water. Color is the measure of clarity of water, how close to perfectly clear is the water separate from suspended particles.
(Science Note: turbidity measures the scatter of light through the water sample and color measures the absorption of light by the sample). If you think of loose leaf tea, turbidity is the leaves in the water and color is the brown tint the water takes on. In general the lower the turbidity an the lower the color the safer the water is to drink (this is NOT always true).

The river sample started with 18.4 NTU (Nepheletic Turbidity Units) and after filtration it was 4.72 NTU. To put a little perspective to these numbers anything under 5NTU is invisible to the naked eye and at my water system I am not allowed to go over 1NTU. There was a 75% reduction in turbidity. The remaining turbidity is not terribly impressive but expected from a filter of 1.0 micron. Remember, the PurifiCup doesn’t claim to physically remove everything from the water.

Color is the final parameter I tested. Color isn’t in itself a health related property of water. A lot of color doesn’t necessarily mean the water is unsafe to drink. Removal of color however is a good indicator of the removal of many dissolved chemicals. The Color of my river sample was 128 (there are no units for color). The PurifiCup reduced that number to 81. Therefore 63% of the color was removed. This may not seem like a lot, but color is one of the most difficult things to remove from water.

Now for the parameter I was most curious about on a professional and personal level. Bacteria; does the PurifiCup actually disinfect water? I had to send this to an external environmental laboratory as I don’t have access to a biological lab. This limited the number and types of bacteria I tested. I chose to test for heterotrophic bacteria (heterotrophic plate count or HPC). These bacteria are not pathogenic, but they are resistant to many treatment processes and that makes them an excellent indicator of treatment success. I tested the HPC of the river and PurifiCup effluent.
First, bacteria tests are measured in colony forming units (cfu). A cfu is a group of bacteria that group into a visible blob (colony) of bacteria. The raw water from the river had a cfu count of 800 and the treated water had a cfu count of 500. 500 may seem like a lot, but it is a misleading number. Remember the disinfection doesn’t mean the killing of all bacteria, that’s sterilization. Disinfection is the removal or inactivation of pathogenic bacteria. Inactivation stops the ability of bacteria to reproduce and cause disease. Like I said before 500 cfu may seem like a lot. But these 500 cfu were inactivated. Remember the 1micron filter? A lot of bacteria go through the filter, but unlike the raw sample the 500 cfu didn’t grow. So while 500 cfu is a big number, they are not able to cause disease. The PurifiCup made the sample significantly safer to drink.

I highly recommend this product as part of a water purification system.  The portability and low cost of the PurifiCup makes this product a simple addition to your emergency preparations or for an avid outdoors-man’s kit.

How Big Of A Septic Tank Do I Need?

Septic systems are the most common type of sewage treatment for people living off of municipal or communal sewage systems.  The treatment of sewage is necessary even for people going “off grid”.  Most, and probably all jurisdictions in North America have some requirements for sewage treatment.  Treating sewage is also significantly better for the environment as exposure to untreated waste water is a common way to spread disease in humans and other animals.  Septic systems break down the organic components in sewage and provide water that is safe to be released into a form of biological treatment.  This is usually soil, in the form of a drain field.  I frequently get asked how large a septic tank is needed for someone installing or upgrading their waste management system. How large a tank needs to be ultimately depends on how much water will be put through it.

Predicting how much water will enter your septic tank will can be simple, or it can be very difficult but it always starts with your water use. To estimate your water usage there are some things you will need to know.
How many people are in your household? How many people are usually in your house and on your system?  This includes visitors which only visit once a year. How much water are you currently using? If you have a water bill now you can see it easily.  The water you use day to day becomes the waste water you have to deal with later.  The age of people in your household will play a factor.  Even if you are good at conserving water, children will waste a lot more water and they require more water in the form of bathing and laundry.  Both of those traits will increase the demand on your septic system when many kids are around.  Larger septic tanks are required for people not used to conserving water, when choosing your tank size, try to remember, most people are horrible at conserving water.

Ok, here are some guidelines for determining the size of the tank required.  The smallest tank size allowed in some jurisdictions is one thousand gallons.  A one thousand gallon tank can handle around 600 gallons of sewage per day.  In terms of percentages, a septic tank should he 40% larger than the flow of sewage into it, or the sewage flow should not be greater than 60% of the tank capacity.

What if you do not know how much water people are using or how much waste water you are creating?   Continue reading

Back Up Source of Water

Do you have a backup source of water? I do. I am also preparing for the ability to treat water at home. Not everybody will have the knowhow/space/desire to follow my plan, but there are things you can do to protect yourself in the event of a prolonged disaster or emergency. Let’s look at what happened in the town of Walkerton. In may of 2000 there was a prolonged and persistent contamination of the public water supply. The causes of which are well known and on the simplest level; the human, mechanical, and monitoring systems broke down. Seven people died directly from drinking contaminated water and 2500 people became seriously ill, some are still sick to this day from the resulting kidney damage. This was human made disaster, the same thing can just as easily come from a natural disaster. Continue reading

Self-Reliant Liquid Waste Management

I have already written about how to develop a solid waste (garbage) management plan. If you are interested in living off grid, in a long term self sustainable way, you also need a solution to your liquid waste (sewage and others). There are two generic steps to accomplish this. The first is to separate the solids from the water and the second is a biological reduction of the organic material in the water and biosolids. If you are releasing into surface water there is frequently a disinfection stage as well and a dechlorinating stage after that.

There are two key groups of liquid waste. Biological waste, and industrial/chemical waste. Continue reading

Disinfection With Sodium Hypochlorite

In order to prevent disease all water should be disinfected before drinking. The most common way this is done in North America is with chlorine in one form or another. Chlorine comes in three main types, chlorine gas, sodium hypochlorite and calcium hypochlorite. In this article I will focus on sodium hypochlorite.

Continue reading

Long Term Self-Reliant Solid Waste Management

Waste is an invisible (or willfully ignored) part of modern life. I write that sentence a lot. It shows up in a lot of my articles. What I mean to say is, think about your waste, even if all you manage to plan for is “eww! gross! I’m just going to throw it out the window.” then at least you know what to expect. For the record, just throw it out the window is a very bad plan. So what does one need to become waste independent? First we need to understand that waste comes in three different basic forms. Solid waste, liquid waste and gaseous waste. In this article I will focus on solid waste. Continue reading