Ageing Infrastructure

What do you think is the most likely reason for a water grid shutdown?  It isn’t terrorism and it isn’t pollution. The answer is, the age of the infrastructure used to deliver the water or collect the sewage. Think about the city you live in. Chances are it has existed for hundreds of years, if not longer. Most cities water systems grow in phases. They keep adding to the network every year as the population grows. The end result is most cities have infrastructure that range from less than a year to hundreds of years and with many different materials. I have seen water mains made of wood in service as late as 2011. Like any piece of equipment it all has a useful lifespan, beyond that lifespan failures become increasingly more likely to be catastrophic. The result is a large volume and dollar amount of material and equipment that needs repairs or to be replaced.

Wooden Water Main circa 1909 source www.nytimes.com

Wooden Water Main circa 1909 source http://www.nytimes.com

Normally the stress on water systems comes from population growth.  A water main that was ok in the 1980’s may not be large enough for today’s population.  As cities infill and build higher density buildings they frequently overburden the water systems.  Either causing contamination or total failure of the system.

Older equipment is also more susceptible to natural disasters, terrorism and human accidents. These three things can break a new system too, however they don`t have to try as hard with the older systems.

Climate change is having an affect too.  As severe weather events are on the rise, storm sewers might be found lacking, as was the case in Calgary, Alberta and Toronto, Ontario recently.  The system was grossly undersized for the amount of rain that fell.  They said things like “it was a month’s worth of rain in one day” on the news.  When the fact is, it once was a months worth of rain, and is now something more frequent, lets say a weeks worth of rain.    I’m not suggesting we build our systems to meet a 1000 year storm, but I am suggesting that our current idea of a 100 year storm may be an underestimation and that the error is getting worse.  To bring it back to infrastructure, if we are built to the current 100 year storm levels, what happens if the 100 year storms are getting worse?  We will find out in the not too distant future.

Calgary, Flood, Floods, Water

Flooding In Calgary AB 2013 source: http://www.newinfills.ca

What are the options for people to take? The first and most important thing to do is to plan ahead and replace older parts of the system before they fail.  A $50,000 job to replace an old section of pipe at a time you choose is a lot cheaper than waiting for it to fail at the time you are least prepared.  If you are connected to a public utility, ask them about their equipment replacement plan.  If they are not looking 25 years into the future or longer then ask them why not? If you have private systems, you need to ask the same questions.  Can you afford to replace the septic system when it fails? Or can you afford to dig/drill a new well when the casing cracks?

As you can probably surmise the addition of more people + more rain + more water and more sewage means system failures will become more frequent and probably for longer periods of time.  What does this mean to the average person?  Plan for system failure.  Have a backup system ready to go when it does.  Know the age of your equipment and it`s expected lifetime. That way you wont be caught off guard.

Advertisements

Cleaning Up Contamination with Super Chlorination

Super chlorination is a technique used to clean and disinfect water holding vessels that cannot be washed in the traditional sense. This is different from your standard disinfection, which is for cleaning the water, not the container. Super chlorination is used when reservoirs become contininated with microorganisms or have been emptied for any reason (indicating possible esposure to contamination).

Super chlorinating is simple. On a very basic level, it is just adding a large amount of chlorine to a reservoir either as a wash applied directly to the wall or as a very strong chlorine/water solution which fills the entire reservoir.
On a more specific level, it is dependant on the strength of the hypochlorite and the amount of time the chlorine is left in direct contact with the container. The stronger the chlorine the less time required. For example, if you decide to spray the walls with straight 10% sodium hypochlorite then there is almost no time required. Whereas the normal chlorine levels in most municipal drinking water systems is not enough to ever disinfect the vessel it is in. Those low levels of chlorine will only protect the water from contamination in a reservoir that is already free of contamination.

Now you might be asking how to figure out how much chlorine to add to make super chlorinated water. If you think all you need is to dump a large amount of chlorine in then I will point out that releasing large amounts of super chlorinated water into the environment is illegal in most jurisdictions. So it is necessary to calculate how much dechlorinating agent is needed. The easiest way to know the dechlorinating needs is to measure the amount of chlorine added. In order to save money or time it is best to calculate the ammount of chlorine necessary.

50 mg/L (50 ppm) of available chlorine is a great place to start. 50 mg/L left for 24 hours will meet the best pratices and standarized procedures for most jurisdictions in North America. Below is a table outlining how much chlorine you need to add for various volumes of water.

image

Super Chlorination Volumes at 50 mg/L (from the City of London Port Health Authority)

From this chart you can see exactly how much chlorine to add. Add the hypochlorite solution when the system is haIf full. Then fill the tank or reservoir the rest of the way with clean water. If you are disinfecting something with plumbing, like a building or a boat, then make sure the super chlorinated water makes it to each cold water faucet by flushing until you can smell chlorine (or can measure it). Do not flush the hot water faucet. all you will do is waste chlorine and hot water.

This procedure will disinfect any reservoir. Regardless of the levels of bacterial contamination, because if it doesn’t work the first time repeat the process until it does. The most likely culprit if super chlorination doesn’t work the first time is that a pipe connected to the tank wasn’t flushed completely.

Whether you have a large tank of reserve water or your rain barrels start growing dangerous microorganisms, you may need to super chlorinate one day.

Disinfection with Potassium Permanganate

Potassium Permanganate is a very versatile chemical. It can be used for disinfection, removing hardness, removing iron and manganese. It has another health related use, it can be mixed into a paste and used as a topical salve for athlete’s foot (or similar problems). As a result potassium permanganate is a great addition to any emergency preparedness supplies.

Potassium Permaganate has the chemical formula of KMnO4, and it comes as a deep purple dry powder. This chemical is a very powerful oxidizer and it should not be stored anywhere near acids or fuel sources or it could result in fires, explosions and/or toxic gases being formed. Explosives is another use of this chemical (one which I will not be explaining here). This chemical can be stored for over a year if it is kept clean and dry and in a sealed container.

20130109-230655.jpg

Before touching the dry powder, make sure you wear a particle mask (ideally a N95 or better). This chemical will irritate the airways if inhaled directly. Also the powder once mixed with water becomes a powerful dye. It will stain clothes permanently, stain skin temporarily and cause corrosion on any metal or masonry it touches. Anything that becomes exposed to a potassium permanganate solution becomes brown, a similar shade of brown to a henna tattoo.

To make a topical treatment with KMnO4 mix the dry powder with water until it has the consistency of playdoh. Apply the mixture on the affected area and repeat as necessary. Remember that I am not a doctor and I am not giving medical advice. I am only outlining that this chemical CAN be used for medical purposes. Whether or not you SHOULD use KMnO4 for medical applications is not something I can tell you.
.

20130109-231521.jpg

Potassium permanganate is very similar to sodium hypochlorite in the sense that they both disinfect water through oxidation. Disinfection of drinking water can be achieved by adding it to the water until the water turns pink. The pink in the water is the residual potassium permanganate. Meaning that there is nothing left to use up the chemical and any bacteria has been used. Think of the pink water as being similar to the point where you can smell bleach when using sodium hypochlorite for disinfection. Just like with the smell point of bleach has surpassed the disinfection point, you do not need to keep adding KMnO4 until you see pink. Disinfection has occurred well before you can see a lasting pink tint to the water. Using the color change is a simple and easy to remember method for disinfection of drinking water. And if the pink tint disappears at any time then you know you need to add more of the chemical to redisinfect the water.
If you want to avoid pink water and spend less money on chemicals you can buy a testing kit for manganese. Most kits can measure the residual levels of KMnO4 at levels well below the pink water threshold and well above the disinfection requirements.

20130109-231222.jpg

For better results with disinfection it is best to filter the water through a greensand filter. Now this is not an indication of the color of the sand (it is actually black in color). Greensand is an activated filter media designed for removing iron and manganese through a process called ion exchange. The good news with a greensand KMnO4 combination is that the potassium permanganate will reactivate the filter media.

One thing to note is that potassium permanganate once added to water will make the water more corrosive. If the water is very pink it can also stain any container it is stored in. The pink water is perfectly safe to drink. I mean the water is not dangerous because of the pink coloring. It may however be dangerous for another reason or contaminant.

Another thing to note about KMnO4, is that if you add it to chlorinated water it will form a percipitate (solid). This is manganese dioxide, it is harmless except it will consume all the available chlorine in your water leaving you open to contamination from microorganisms.

With a few simple precautions KMnO4 is an excellent chemical to have on hand. It can be stored longer than sodium hypochlorite (bleach) and it can be added directly to the water unlike calcium hypochlorite. It also is very easy to see when enough of the chemical has been added. If there is a lasting pink tint that doesn’t disappear with time then the water has been disinfected.

When it comes to disinfecting your own drinking water, always be careful with the quality of chemical you use. They are not all created equal. The north american standard for chemicals used in drinking water is NSF/ANSI 60. Choose chemicals that meet this standard above ones that don’t. The will be significantly safer for your health and well being.

As with all my disinfection articles, I will remind you to always drink the safest water you can and combining treatment techniques is the best way to achieve safe drinking water

Lids On! Teaching Children Survival Skills

Children are excellent at picking new information however children often find learning survival skills difficult. Even when they do remember what to do to survive, will they remember to use the skill when they need it?
Educating children for wilderness survival needs to be very simple and driven home with a demonstration. Take for example the simple skill of having and wearing a warm hat. Exposure to the elements is something that is very dangerous. It can be fatal to adults and children are even more sensitive.
This may seem like a simple thing, wearing a hat is definitely a simple thing but have you ever tried to keep a hat on a child under ten years old? This is an almost impossible task, except when NOT wearing a hat is too painful like in extreme hot or cold temperatures. Waiting until it is too painful before you put on a hat might be too late in a survival situation.
Here is an experiment you can do with kids to show them the importance of keeping insulated. It is called the Lids On experiment.

What you will need is very simple and you may already have them in your house.
1) Two pots of equal size with lids.
2) Two thermometers. It can be done with one thermometer but it is more dramatic with two. More drama increases the likelihood of them remembering the lesson.
3) Stove with two equal sized burners
4) A timing device, watch, stopwatch, egg timer or a normal clock will all be
sufficient.
5) A measuring cup.

The procedure for the lids on experiment is very simple as well. And there are many possibilities for side lessons some of which I will point out.

1) Measure out the same volume of water and pour it into each pot.
2) Bring both pots to a boil at the same time.
3) Turn off heat source for both pots at the same time.
4) Measure the temperature of the water and note the time.
5) Leave the water to cool on the stove. But leave one pot with it’s lid on and one pot without a lid. You can do the entire experiment again and leave the pots outside and watch the temperature drop faster.
6) Have the kids guess which will cool faster, lid on or lid off?
7) After approximately 10 minutes return and measure the temperature of both pots.

The pot without the lid will be significantly cooler. This is because the lid traps warm air around the top of the boiling water. (Just like a hat does for our heads). The water not protected by the insulating effect of the air is exposed to the elements and heat is actively lost very rapidly. (Just like our body heat when we are improperly protected from the elements).

This experiment can be more than a survival lesson. You can expose children to the safety precautions around the stove/cooking, the physical properties of water (why it boils and at what temperature), how to tell time or read a clock, how to measure volume/temperature and how to ask a scientific question (hypothesis) and test for an answer.
I would only add more information about the experiment if the child or children are really demonstrating that the survival lesson has been learned and internalized. Saying the phrase “lids on” after the experiment has been completed when the child is putting on a hat will help drive the message home. So will playing a Simon Says type game where the commands are Lids On and Lids Off. Lids On instructs that they put on a hat and act warm. Lids Off instructs that they take off the hat and act cold.
The repetition after the experiment will be the best thing you can do to maximize the chances that they will remember to put their lids on when they really need to.

Rebuilding Society: Agriculture

This is my latest article on what is important for rebuilding society after a societal collapse. Agriculture is important for obvious reasons. Without an adequate food supply there is no possibility for any society. Agriculture is the only long term method for managing the food supply. Hunting and gathering take too much time and area for current populations. Storing food is very temporary and doesn’t last very long. Trading for food is something many countries do today, but this is dependent on a very reliable transportation network.

20121219-212346.jpg

The lowest level of sustainable agriculture is subsistence agriculture. This means the levels of production from agriculture are just enough to sustain your own existence (or your family’s existence). Subsistence agriculture is very time intensive. It leaves you with little to no time for other things like education, construction and any other form of employment. Societies heavy with subsistence agriculture are also societies rampant with poverty. Subsistence farming is not a way to grow a society, it is merely a way to survive. After a societal collapse, subsistence farming will become common place. Those with knowledge and the means to grow food will probably be able to produce ample amounts of food. It is everyone else who will struggle to achieve a subsistence level of food production. Those that fail will probably die from starvation.

The knowledge required for successful agricultural production needs to survive the collapse. Books on the subject are a good start. A much greater resource are people who are already successful at propagation of food plants and raising livestock. Agriculture at any level is more complicated that putting seeds in the ground or letting a herd roam free. There will be local conditions that determine best chances of success. Soil and weather patterns vary widely at surprisingly small scales. If someone you know has knowledge like this, make them your new best friend.

Historic techniques for farming will be very useful. Many modern crops and farms are dependent on pesticides and fertilizer. Unless someone knows how to continue making these chemicals, those supplies will quickly run out and in some cases expire. Ideally, the knowledge required is more than just historical farming techniques as many of them were destructive to either the environment at large, water sources and soil quality. The best knowledge to have are the low technology techniques for treating current agriculture problems. A good example of what I mean is how flies around cattle can spread pink eye around the herd. Currently this is usually controlled by a bovine insect repellent sprayed over the cattle. It works great at keeping flies away, but after the collapse the industry and transportation infrastructure may not be present or reliable. A low technology solution is to feed the cattle garlic. Something in the garlic makes the cattle less appetizing. You may not notice less flies around the herd as you would with the insecticide, but the infection rates of pink eye will go down, and isn’t that the problem that needed solving? With the prevalence of garlic worldwide, this solution for pink eye cold be done by almost any cattle farmer (I’m not sure if garlic would affect milk taste in a dairy cow). My point is, all the farmer needs is to grow some garlic and he/she has something with multiple uses and is dependent on nobody to do it.

After subsistence level agriculture, comes increasing levels of food security, wealth and time. Historically we moved beyond subsistence farming by improving techniques and creating new techniques, new hybrid crops and breeding animals to better suit local conditions. This was achieved through research, experimentation and trial and error. After a collapse, research and experimentation will probably stop, leaving just trial and error and people who know better slowly spreading the best techniques through word of mouth.

As society begins to reform, places with food will become boom towns and places without will disappear. Sustainable agriculture is the best way towards a stable society.

Can I use a storm-water pond as a back-up source of water?

Storm-water ponds are the closest alternative source of water for many people living in urban areas. In an emergency this source of water may be all that is available to you.  Eventually any water you have stored will be consumed and the water in a storm-water pond may be the difference between life and death.  With the proper treatment your local storm-water pond can be a great backup source of drinking water.

Industrial storm-water pond (source: info.evergreen.ca)

Storm-water presents a unique set of challenges during treatment. Because storm-water ponds collect surface water, the water is exposed to all the contaminants on the ground in the catchment area. This includes but is not limited to pesticides and fertilizers applied to lawns, motor oil and gasoline leaking from vehicles and litter like cigarette buts. It all ends up is the storm-water pond. Those chemicals are already in storm-water ponds on a normal day. During an emergency there may be additional contamination from sewage runoff from an overloaded or broken sewage system. The water in the pond will also contain all the microorganisms like ecoli, giardia and cryptosporidium normally in surface water. Any one of these will make you very sick if you get infected with them.
Finally, there will be high levels of nitrates in storm-water ponds. Too much nitrates consumed by young children can cause blue baby syndrome.

The first step in treating water from a storm-water pond is straining. Straining the water through a cloth or loose sand filter will remove large particles (ones you could pick up with your fingers). Remove as much of the suspended particles from the water as you can. Straining the water first will extend the life of your proper water filter.

If you have a clarifying agent like aluminum sulfate, this is the best time to add it to the water.  It will make contaminants too small to be filtered become attracted to each other and become significantly larger.  Larger particles are easier to remove from the water. Let the water sit still for at least 30 minutes without disturbing it.  All the newly formed large particles (called floc) will sink to the bottom.  When you take the water from this container, make sure you leave the majority of the settled material at the bottom of the container.

Urban Storm-water pond (source: greenbmp.blogspot.com)

The next step is to filter the water. Filter the water even if it looks clear, the human eye is five times too weak to detect dangerous levels of particles. Filter the water at least once through an activated carbon filter. Activated carbon is known to remove many different chemicals from water including pesticides, chlorine and fluoride. Activated carbon is not the same as charcoal. Charcoal is similar, it can remove toxins from water but it is nowhere near the efficiency of activated carbon.

The third step is oxidation. Oxidation will help with disinfection as most disinfectant chemicals are also oxidizers. Chemicals like sodium hypochlorite and potassium permanganate are both oxidizers and disinfectants. Oxidation will break down many of the remaining contaminants and inactivate many of the remaining bacteria. Keep adding the oxidizer/disinfectant till you can detect a residual after 20 minutes. The 20 minutes is the minimum you should wait for a gallon of water. Wait longer for larger volumes. This is because oxidation is a chemical reaction that isn’t instant. It needs time to complete the reaction.

The fourth step is to filter the water again. Filtering again is necessary because the disinfection/oxidation step will create some potentially carcinogenic byproducts. We filter before oxidation to minimize the amount of chlorine (or other chemical) and to limit the possibility of forming dangerous byproducts. We filter the second time to remove any byproducts that have been formed.

The final step is to boil the water.  This will help with disinfection, but the main goal of boiling at this point is to remove any volatile chemicals.  Any chemical with a boiling point lower than water will be removed after boiling.

A note about disinfection.  If all of these steps are followed there is no need for a step dedicated for disinfection.  Between the oxidation and the boiling of the water any microorganisms will be inactivated.  If you are storing the water for a long time then add some sodium hypochlorite for a residual disinfectant.  The residual disinfectant will prevent the water from becoming recontaminated before you drink it.

One additional possible step is to aerate the water.  Ponds are frequently stagnant.  Stagnant water is green with algae, it smells bad and tastes worse. After the water is made potable, transfer the water back and forth between two glasses. This adds oxygen to the water and will make the water taste better.

This may seem like a lot of work for something as small as a storm-water pond.  What I have described are the basic steps to turn the potentially toxic water in the pond into clean and safe drinking water.

Water Preparedness: Common Beginner Mistakes

Are you thinking about starting to store water? How about emergency water treatment? Getting started can be a very daunting task. Where should efforts be focused? What pitfalls should be avoided?  This article will explore a few of the mistakes I see people make when they start to take their personal water security seriously

Don’t be left without potable water. Avoid beginner mistakes. (source: always foodie.com)

The very first thing to learn is that there is no magic bullet. There is never a single product or technique which will always make water safe to drink. Combining, knowledge, multiple storage/treatment techniques and multiple products for storage/treatment is the best way to guarantee a safe source of drinking water for yourself and your family.  This logic or philosophy of combining as many protections as possible is used by municipal water systems all across North America.  It is referred to as a multi-barrier approach and it boils down to having many different protective measures to prevent contamination, in the event that one barrier fails, there are still many others in place.  To put it in layman’s terms, when it comes to water security, it isn’t a good idea to put all your eggs in one basket.

Marketing campaigns will make all sorts of claims about water products. Some will be irrelevant, like claims of BPA free plastic when the product is made from a type of plastic that never had BPA. Other claims will be over stated. The claim that is most often overstated is the number of times a water treatment product can be used. The quality of the water being treated is too variable for any company to give you an absolute number of times. This might not be done to deceive you. It could just be that the water they tested the product with was easier to treat then your water. Remember that no product will make the water perfect.  They will make the water safer when used correctly, if used incorrectly many water treatment products can make the water significantly more dangerous to drink.

Water needs to be stored in an appropriate container. This container needs to be able to physically hold the weight of the water and not leach any chemicals into the water. Assuming any garbage can sized container is appropriate will at best lead to soggy disappointment and at worst a severe case of gastrointestinal disease. For more information on water storage, read The Why? How? and How Much? of Water Storage?

Once your water is stored it needs to be kept safe. Water can become contaminated at any time. Anytime the container is open there is potential for contamination to occur. Read this article to find out what to do when your backup source of water becomes contaminated. The assumption that water only needs to be treated once is false. What was once safe to drink may be very dangerous when you need it if your aren’t protective of your supply. Water can turn stagnant when stored for long periods of time. Stagnation while not a health hazard is a taste hazard. Stagnant water tastes bad. Adding air to the water is how you relieve stagnation. Adding air is as simple as passing the water from one glass to another repeatedly or stirring the reservoir. The goal is to increase surface contact between the atmosphere and the water. It is important that aeration of the water will also remove the remaining chlorine (if any was present) in the water. If you are aerating the reservoir make sure you add some more disinfectant. Do this so you can keep your disinfectant residual high enough to keep the water contamination free.

Another mistake people make, is they store water but make no changes for reducing the water they use. Forgetting to change behavior during a crisis is probably the biggest mistake beginners make. Different situations require different behavior, this applies to your personal water use. You will be amazed at how much water is used if you aren’t careful. What could last a week might be used in a day and then you will understand the true value of water conservation. This mistake can also happen in more than just your water use.  For more information on water conservation read why water conservation is a prepper’s must do.

The single biggest mistake beginners is they assume that they can learn how to treat water later. Later becomes too late and then it can become fatal. It is very difficult to learn something complicated like water treatment when your life depends on it. Learning as much as you can before an emergency strikes is the single best thing you can do to stay safe.

This article covers just a few of the common mistakes I see people make when they start taking their water security more seriously.  There are many more mistakes that can be made and no one person has the perfect solution to them all. Water security is something that needs to be tailored to each person or family’s needs.  Have you found any common mistakes while preparing for water shortages? If so, leave a comment below, I would love to hear them.