Rebuilding Society: Agriculture

This is my latest article on what is important for rebuilding society after a societal collapse. Agriculture is important for obvious reasons. Without an adequate food supply there is no possibility for any society. Agriculture is the only long term method for managing the food supply. Hunting and gathering take too much time and area for current populations. Storing food is very temporary and doesn’t last very long. Trading for food is something many countries do today, but this is dependent on a very reliable transportation network.

20121219-212346.jpg

The lowest level of sustainable agriculture is subsistence agriculture. This means the levels of production from agriculture are just enough to sustain your own existence (or your family’s existence). Subsistence agriculture is very time intensive. It leaves you with little to no time for other things like education, construction and any other form of employment. Societies heavy with subsistence agriculture are also societies rampant with poverty. Subsistence farming is not a way to grow a society, it is merely a way to survive. After a societal collapse, subsistence farming will become common place. Those with knowledge and the means to grow food will probably be able to produce ample amounts of food. It is everyone else who will struggle to achieve a subsistence level of food production. Those that fail will probably die from starvation.

The knowledge required for successful agricultural production needs to survive the collapse. Books on the subject are a good start. A much greater resource are people who are already successful at propagation of food plants and raising livestock. Agriculture at any level is more complicated that putting seeds in the ground or letting a herd roam free. There will be local conditions that determine best chances of success. Soil and weather patterns vary widely at surprisingly small scales. If someone you know has knowledge like this, make them your new best friend.

Historic techniques for farming will be very useful. Many modern crops and farms are dependent on pesticides and fertilizer. Unless someone knows how to continue making these chemicals, those supplies will quickly run out and in some cases expire. Ideally, the knowledge required is more than just historical farming techniques as many of them were destructive to either the environment at large, water sources and soil quality. The best knowledge to have are the low technology techniques for treating current agriculture problems. A good example of what I mean is how flies around cattle can spread pink eye around the herd. Currently this is usually controlled by a bovine insect repellent sprayed over the cattle. It works great at keeping flies away, but after the collapse the industry and transportation infrastructure may not be present or reliable. A low technology solution is to feed the cattle garlic. Something in the garlic makes the cattle less appetizing. You may not notice less flies around the herd as you would with the insecticide, but the infection rates of pink eye will go down, and isn’t that the problem that needed solving? With the prevalence of garlic worldwide, this solution for pink eye cold be done by almost any cattle farmer (I’m not sure if garlic would affect milk taste in a dairy cow). My point is, all the farmer needs is to grow some garlic and he/she has something with multiple uses and is dependent on nobody to do it.

After subsistence level agriculture, comes increasing levels of food security, wealth and time. Historically we moved beyond subsistence farming by improving techniques and creating new techniques, new hybrid crops and breeding animals to better suit local conditions. This was achieved through research, experimentation and trial and error. After a collapse, research and experimentation will probably stop, leaving just trial and error and people who know better slowly spreading the best techniques through word of mouth.

As society begins to reform, places with food will become boom towns and places without will disappear. Sustainable agriculture is the best way towards a stable society.

Terrorist Attack and Water Systems

Water systems are distributed networks of pipes, pumps and reservoirs. Like all distributed networks they can be very difficult to protect from vandalism and terrorist attack. There are two broad types of attacks that could hit a water system. The first type is an attack on the quantity of water available (physical supply) and the second is an attack on the quality of water. The end result of both types of attack is a lack of potable water entering your home.

The greatest defense for a water system is that most of it is underground. It is very difficult to access most parts of water distribution systems. Even for the operators of the system it is time consuming and disruptive to the wider community. If anyone unauthorized to dig in a road to access a watermain they will be reported to the authorities in the form of complaints about traffic or noise.
I think it goes without saying that depending on public complaints to defend against terrorism is nowhere near secure.

Water Treatment Plant (source: wikipedia.org)

The exposed parts of water systems are water treatment facilities, reservoirs and fire hydrants. These are the points where the system is at the surface and easily accessible. These different points also offer different security concerns.

Treatment facilities are as secure as any factory or industrial facility will be. The treatment facility I work at is always locked and there are a limited number keys. Then there is an electronic alarm system which brings a human on site if there is an intrusion alarm. There is also a human dispatched if the communication link is broken. A large city water treatment facility will most likely be manned twenty-four hours a day. The biggest weakness here is that properly armed people can force their way in and destroy the building if they so desire. Or they can contaminate the reservoir on site (if they know how).

Reservoirs of treated water are next most likely place for a terrorist attack. The biggest weakness here is that reservoirs are almost never manned during the day. They will be visited most days, but rarely will people be there all day. The good news is that water in reservoirs is monitored constantly(usually) with automatic analyzers. Reservoirs can be destroyed, and the water within wasted. Or the quality of the water can be destroyed this is where chemicals could be added easily.

The remaining pieces of the system are fire hydrants. Fire hydrants pose a unique risk to water security. It is very easy to add chemicals to a fire hydrant. It is however not easy to get that chemical into the water supply. This is because of the construction of the hydrant itself and the pressure in the system. There is a valve at the bottom of the hydrant which isolates the water. In order to add chemicals to a fire hydrant you also have to lower the system pressure which is rarely easy to do undetected. At this point I want you to remember the scene in Batman Begins where Sandman is dumping his psychotropic drug into a cracked watermain. I don’t expect realistic depictions from the movie, I do however want you to know this is nowhere near realistic. Watermains are pressurized, when they crack water shoots out at anywhere from 50 to 100psi. This is enough to erode foundations of buildings and the all soil around the break creating massive sinkholes. It is not something you can pour chemicals into. This is what it looks like when watermains break.

Just adding chemicals to water, is not as effective as it appears on the surface.  Most water supplies contain residual disinfectants, usually chlorine.  Disinfectants are highly reactive chemicals, they aren’t limited to just killing bacteria.  Highly reactive chemicals often react with other chemicals.  I am obviously oversimplifying the chemistry involved, but it is true that a large portion of any chemical added to water will be consumed by the chlorine in the water.

Adding Chemicals to Water (source: http://www.thejakartapost.com)

Cyber attack is another way water systems are vulnerable.  You may wonder why water treatment facilities are connected to the internet and the answer is for remote monitoring and control.  It may seem like an unwarranted risk having these facilities connected to the web.  It is not an unwarranted risk at all.  The likelihood of the automated system needing an intervention that cannot wait for someone to be onsite is greater than a targeted cyber attack. Keep in mind that even normal breakdowns of the watersystem can cause illness and even death.  These need to be responded to and are just as important as preventing cyber attack. I am not a technology expert so I will leave it to other people to suggest the best firewall setup.   Another thing to note about cyber attack on a water treatment facility is that even if the attacker is successful and shuts down the control computer, the facility can still be controlled manually.

Terrorism is something that needs to be addressed when it comes to water systems.  People inside and outside the system need to be aware of the risks and what can be done for protecting the security of out water.

Water Preparedness: Common Beginner Mistakes

Are you thinking about starting to store water? How about emergency water treatment? Getting started can be a very daunting task. Where should efforts be focused? What pitfalls should be avoided?  This article will explore a few of the mistakes I see people make when they start to take their personal water security seriously

Don’t be left without potable water. Avoid beginner mistakes. (source: always foodie.com)

The very first thing to learn is that there is no magic bullet. There is never a single product or technique which will always make water safe to drink. Combining, knowledge, multiple storage/treatment techniques and multiple products for storage/treatment is the best way to guarantee a safe source of drinking water for yourself and your family.  This logic or philosophy of combining as many protections as possible is used by municipal water systems all across North America.  It is referred to as a multi-barrier approach and it boils down to having many different protective measures to prevent contamination, in the event that one barrier fails, there are still many others in place.  To put it in layman’s terms, when it comes to water security, it isn’t a good idea to put all your eggs in one basket.

Marketing campaigns will make all sorts of claims about water products. Some will be irrelevant, like claims of BPA free plastic when the product is made from a type of plastic that never had BPA. Other claims will be over stated. The claim that is most often overstated is the number of times a water treatment product can be used. The quality of the water being treated is too variable for any company to give you an absolute number of times. This might not be done to deceive you. It could just be that the water they tested the product with was easier to treat then your water. Remember that no product will make the water perfect.  They will make the water safer when used correctly, if used incorrectly many water treatment products can make the water significantly more dangerous to drink.

Water needs to be stored in an appropriate container. This container needs to be able to physically hold the weight of the water and not leach any chemicals into the water. Assuming any garbage can sized container is appropriate will at best lead to soggy disappointment and at worst a severe case of gastrointestinal disease. For more information on water storage, read The Why? How? and How Much? of Water Storage?

Once your water is stored it needs to be kept safe. Water can become contaminated at any time. Anytime the container is open there is potential for contamination to occur. Read this article to find out what to do when your backup source of water becomes contaminated. The assumption that water only needs to be treated once is false. What was once safe to drink may be very dangerous when you need it if your aren’t protective of your supply. Water can turn stagnant when stored for long periods of time. Stagnation while not a health hazard is a taste hazard. Stagnant water tastes bad. Adding air to the water is how you relieve stagnation. Adding air is as simple as passing the water from one glass to another repeatedly or stirring the reservoir. The goal is to increase surface contact between the atmosphere and the water. It is important that aeration of the water will also remove the remaining chlorine (if any was present) in the water. If you are aerating the reservoir make sure you add some more disinfectant. Do this so you can keep your disinfectant residual high enough to keep the water contamination free.

Another mistake people make, is they store water but make no changes for reducing the water they use. Forgetting to change behavior during a crisis is probably the biggest mistake beginners make. Different situations require different behavior, this applies to your personal water use. You will be amazed at how much water is used if you aren’t careful. What could last a week might be used in a day and then you will understand the true value of water conservation. This mistake can also happen in more than just your water use.  For more information on water conservation read why water conservation is a prepper’s must do.

The single biggest mistake beginners is they assume that they can learn how to treat water later. Later becomes too late and then it can become fatal. It is very difficult to learn something complicated like water treatment when your life depends on it. Learning as much as you can before an emergency strikes is the single best thing you can do to stay safe.

This article covers just a few of the common mistakes I see people make when they start taking their water security more seriously.  There are many more mistakes that can be made and no one person has the perfect solution to them all. Water security is something that needs to be tailored to each person or family’s needs.  Have you found any common mistakes while preparing for water shortages? If so, leave a comment below, I would love to hear them.

Water Survival During the Zombie Apocalypse

First off a bit of a disclaimer, I am fully aware that zombies are not real.  I am however highly entertained by zombies and all things undead.  Since the Omega Man Journal is about water and survival, that lead to the obvious thought experiment of what challenges a zombie outbreak would have on our ability to get safe drinking water.

Zombie, Zombies, Undead, Scary Zombie,

Zombie Rage Face (zombieambience.com)

The first thing to appear after the dead rise will be panic. Fear will be rampant and many people will be operating on their fight or flight instincts others will be holed up at home. This includes the people who work at municipal water treatment plants. Water facilities, although automated still depend heavily on people to operate them. When those people stop going to work or are already zombie chow then the water will stop shortly thereafter. To see what it would look like when a water system gets shut down and roughly how long it would take read Grid Shutdown: How Long Will The Water Last. The same will be true of the sewage systems. Read Grid Shutdown: Why Is There S#!t In My Basement, Sewage Emergency: Thunder Bay Flooding and A City Without Sanitation to see just how disgusting our once clean (or not so clean) cities will become.

Zombie, Horde, Zombie horde, the walking dead, set pictures

Zombie Horde (geektyrant.com)

Speaking of sanitation, people will die from unsanitary conditions. That means dead bodies, not just zombies, but regular dead bodies. Cholera is an excellent example of a waterborne disease that is a direct result of decomposing animal tissues in a water supply. Thirst will drive people to the nearest supply of water, then many will die on the banks and contaminate the lakes and rivers. Remember at this point I’m not talking about zombie contamination of water sources. That’s coming up later. This is a real danger when thirsty people or animals die in water supplies.

Depending on how zombies are created there may be a serious water vulernability. There are already bacteria, viruses, parasites and other micro-organisms that use both water and human bodies as part of their natural life cycle. Typically we call the effect of these micro-organisms “water borne disease”. Also there are already parasites that can take control of other organisms even to the point of making the host suicidal. Specifically there is a fungus that will radically alter the behaviour of ants turning them into zombie ants. (read more about zombie ants).  We are talking about total control of the host for the benefit of the parasite. Finally there are countless micro-organisms and insects that thrive and depend on rotting flesh to survive either for food or as a vital part of a life cycle stage like maggots turning into flies.

Bacteria thrive on and cause decomposition of deceased organic matter

Those three characteristics which already exist, put a zombie making organism on the edge of being possible. Nature has already made all the organisms necessary to create a zombie, luckily for now the necessary skills are in different organisms and target different organisms. The problem is, if nature caused one organism to eat rotting flesh, it can teach another organism to do the same. Same thing with learning to disperse through water and to take control of other organisms.

Zombie Ant With Fungus Growing Out Of Its Head (nationalgeographic.com)

Let’s assume this is the cause of zombification, what then can anyone do to protect themselves? The good news is that modern water treatment is very good at removing and inactivating micro-organisms. The combination of chemically assisted filtration and disinfection should (if done correctly) remove 99.999% of micro-organisms. Depending on the size of this fictitious zombie bug/parasite/virus it might be possible to remove even more than 99.999% if it is on the large end of the size scale. If it is a virus, which is the smallest type of micro-organism then removing 100% of the z-virus will be next to impossible. That means we better hope that there is a disinfection method that can kill the virus either chlorine, UV, ozone or boiling.

Zombies Again (beyondhollywood.com)

One thing many people haven’t thought about when they are talking about zombies and water.  Water is very heavy.  If you have to haul water from its source to your secure facility it will become very difficult to run at the same time.  Now vehicles are an option as are hand carts and if you have the resources pumps and pipes are best.  Just remember that they are all noisier and may attract unwanted attention from nearby zombies.

Those are some of the challenges I see affecting our ability to drink safe potable water in the event of a zombie outbreak.  I tried to be as true to real science as is possible when talking about zombies.  At the very least I hope you were entertained.  Can you think of anything I missed?